Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

Æó¼â¼º ¼ö¸é¹«È£Èí ȯÀÚÀÇ »ó±âµµ ÇüÅÂÀÇ Æ¯Â¡°ú ¾Ð·Â°­ÇÏ¿¡ °üÇÑ 3Â÷¿ø Àü»êÀ¯Ã¼¿ªÇÐÇؼ®

Morphological characteristics of the upper airway and pressure drop analysis using 3D CFD in OSA patients

Korean Journal of Orthodontics 2010³â 40±Ç 2È£ p.66 ~ 76
¸ð¼º¼­, ¾ÈÇüÅÃ, ÀÌÁ¤¼±, Á¤À¯»ï, ¹®À±½Ä, ¹èÀÀ±Ç, ¼º»óÁø,
¼Ò¼Ó »ó¼¼Á¤º¸
¸ð¼º¼­ ( Mo Sung-Seo ) - °¡Å縯´ëÇб³ ÀÇ°ú´ëÇÐ ¼º¸ðº´¿ø ±³Á¤°ú
¾ÈÇüÅà( Ahn Hyung-Taek ) - ¿ï»ê´ëÇб³ °ø°ú´ëÇÐ Á¶¼±Çؾç°øÇкÎ
ÀÌÁ¤¼± ( Lee Jeong-Seon ) - ¿ï»ê´ëÇб³ ÀÇÇаú ±³Á¤ÇÐ
Á¤À¯»ï ( Chung Yoo-Sam ) - ¿ï»ê´ëÇб³ ÀÇ°ú´ëÇÐ ¼­¿ï¾Æ»êº´¿ø À̺ñÀÎÈÄ°úÇб³½Ç
¹®À±½Ä ( Moon Yoon-Shik ) - ¿ï»ê´ëÇб³ ÀÇ°ú´ëÇÐ ¼­¿ï¾Æ»êº´¿ø ±³Á¤°ú
¹èÀÀ±Ç ( Pae Eung-Kwon ) - ¹Ì±¹ UCLA Ä¡°ú´ëÇÐ ±³Á¤°ú
¼º»óÁø ( Sung Sang-Jin ) - ¿ï»ê´ëÇб³ ÀÇ°ú´ëÇÐ ¼­¿ï¾Æ»êº´¿ø ±³Á¤°ú

Abstract

Æó¼â¼º ¼ö¸é¹«È£Èí(obstructive sleep apnea, OSA)Àº ¼ö¸é Áß¿¡ ¹Ýº¹ÀûÀ¸·Î »ó±âµµÀÇ ¿ÏÀüÆó¼â³ª ºÎºÐÆó¼â°¡ ÀϾ´Â ÁúȯÀ¸·Î¼­ Èí±âµÈ °ø±â´Â ¹Ýµå½Ã »ó±âµµ¶ó´Â ¿¬Á¶Á÷ °ü(tube) ±¸Á¶¸¦ Åë°úÇØ¾ß ÇϹǷΠ»ó±âµµÀÇ Æó¼â°æÇâÀº °üÀÇ ÇüÅ ¹× °üÀ» Åë°úÇÏ´Â °ø±âÀÇ À¯Ã¼¿ªÇÐÀû Ư¼º¿¡ µû¶ó¼­µµ Å« ¿µÇâÀ» ¹ÞÀ» ¼ö ÀÖ´Ù. º» ¿¬±¸¿¡¼­´Â OSA ȯÀÚ 3ÀÎÀÇ Ä¡·á Àü »ó±âµµ CT À̹ÌÁö¸¦ ÀÌ¿ëÇÏ¿© °³º°È­µÈ 3Â÷¿ø À¯ÇÑ¿ä¼Ò¸ðµ¨ A, B, C¸¦ Á¦ÀÛÇÏ°í, ºñ°ø ´ç 170, 200, 230 ml/sÀÇ Èí±âÀ¯·®¿¡ ´ëÇÏ¿© 3Â÷¿ø Àü»êÀ¯Ã¼¿ªÇÐ Çؼ®À» ½ÃÇàÇÏ¿´´Ù. »ó±âµµÀÇ À¯¼Ó, À½¾Ð ±×¸®°í ¾Ð·Â°­Çϸ¦ ÃøÁ¤ÇÑ °á°ú °üÂûµÈ 3°³ÀÇ ¸ðµ¨¿¡¼­ ¸ðµÎ ´Ü¸éÀûÀÌ °¡Àå ÀÛÀº ºÎÀ§¿¡¼­ À¯¼ÓÀÌ Áõ°¡ÇÏ¿´°í, À½¾ÐÀÌ Å©°Ô ³ªÅ¸³µ´Ù. ±âµµÀÇ ÇüÅ´ ±¸°³ÀÎµÎ¿Í ±¸ÀεΠºÎÀ§¿¡¼­ Á¼¾ÆÁö´Â ÇüŸ¦ °¡Áö¸ç, ÃÖ¼Ò ´Ü¸éÀû ¿µ¿ª°ú ÇÏÀεΠ´Ü¸éÀûÀÇ Â÷ÀÌ°¡ Ŭ¼ö·Ï À¯¼Ó°ú À½¾ÐÀÇ º¯È­°¡ Å©°Ô ³ªÅ¸³µ´Ù. ºñ°­ ºÎÀ§ÀÇ ÃÖ°í ¾Ð·Â°ú ÃÖ¼Ò ´Ü¸éÀû ¿µ¿ªÀÇ ÃÖÀú ¾Ð·ÂÀÇ Â÷À̸¦ ÀǹÌÇÏ´Â ¾Ð·Â°­ÇÏ´Â »ó±âµµ ÀúÇ×À» Á¾ÇÕÀûÀ¸·Î ÆÇ´ÜÇÒ ¼ö ÀÖ´Â À¯¿ëÇÑ ÁöÇ¥À̸ç, À¯·®¿¡ µû¶ó Áõ°¡ÇÏ¿´´Ù. (´ëÄ¡±³Á¤Áö 2010; 40(2):66-76)

Objective: Obstructive sleep apnea (OSA) is a common disorder which is characterized by a recurrence of entire or partial collapse of the pharyngeal airway during sleep. A given tidal volume must traverse the soft tissue tube structure of the upper airway, so the tendency for airway obstruction is influenced by the geometries of the duct and characteristics of the airflow in respect to fluid dynamics.

Methods: Individualized 3D FEA models were reconstructed from pretreatment computerized tomogram images of three patients with obstructive sleep apnea. 3D computational fluid dynamics analysis was used to observe the effect of airway geometry on the flow velocity, negative pressure and pressure drop in the upper airway at an inspiration flow rate of 170, 200, and 230 ml/s per nostril.

Results: In all 3 models, large airflow velocity and negative pressure were observed around the section of minimum area (SMA), the region which narrows around the velopharynx and oropharynx. The bigger the Out-A (outlet area)/ SMA-A (SMA area) ratio, the greater was the change in airflow velocity and negative pressure.

Conclusions: Pressure drop meaning the difference between highest pressure at nostril and lowest pressure at SMA, is a good indicator for upper airway resistance which increased more as the airflow volume was increased.

Å°¿öµå

Æó¼â¼º ¼ö¸é¹«È£Èí;»ó±âµµ;Àü»êÀ¯Ã¼¿ªÇÐ;¾Ð·Â°­ÇÏ
OSA;Upper airway;Computational fluid dynamics;Pressure drop

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

   

µîÀçÀú³Î Á¤º¸

SCI(E)
KCI
KoreaMed